Take the Laplace transform of the following initial value problem and solve for Y(s)={y(t)}: y″+6y′+17y=T(t) y(0)=0,y′(0)=0 Where T(t)={ t, 0≤t<1/2 1−t, 1/2≤t<1, T(t+1)=T(t) Y(s)=? 2)Take the Laplace transform of the following initial value and solve for Y(s)={y(t)}: y″+4y=R(t) y(0)=0,y′(0)=0 Where R(t)=sin(πt),R(t+1)=R(t). Y(s)=? 3)Take the Laplace transform of the following initial value and solve for Y(s)={y(t)}: y″+1y= { sin(πt), 0≤t<1 0, 1≤t y(0)=0,y′(0)=0 Y(s)=? Hint: write the right hand side in terms of the Heaviside function. Now find the inverse transform to find y(t)=? (Use step(t-c) for uc(t) .)
Take the Laplace transform of the following initial value problem and solve
for Y(s)={y(t)}:
y″+6y′+17y=T(t)
y(0)=0,y′(0)=0
Where T(t)={
t, 0≤t<1/2
1−t, 1/2≤t<1,
T(t+1)=T(t)
Y(s)=?
2)Take the Laplace transform of the following initial value and solve for Y(s)={y(t)}:
y″+4y=R(t)
y(0)=0,y′(0)=0
Where R(t)=sin(πt),R(t+1)=R(t).
Y(s)=?
3)Take the Laplace transform of the following initial value and solve for Y(s)={y(t)}:
y″+1y=
{
sin(πt), 0≤t<1
0, 1≤t
y(0)=0,y′(0)=0
Y(s)=?
Hint: write the right hand side in terms of the Heaviside function.
Now find the inverse transform to find y(t)=?
(Use step(t-c) for uc(t) .)